348 research outputs found

    Simulating the Allocation of Organs for Transplantation

    Full text link
    The demand for donated organs greatly exceeds supply and many candidates die awaiting transplantation. Policies for allocating deceased donor organs may address equity of access and medical efficacy, but typically must be implemented with incomplete information. Simulation-based analysis can inform the policy process by predicting the likely effects of alternative policies on a wide variety of outcomes of interest. This paper describes a family of simulations developed by the US Scientific Registry of Transplant Recipients and initial experience in the application of one member of this family, the Liver Simulated Allocation Model (LSAM).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45816/1/10729_2004_Article_5277541.pd

    Resource dedication problem in a multi-project environment

    Get PDF
    There can be different approaches to the management of resources within the context of multi-project scheduling problems. In general, approaches to multiproject scheduling problems consider the resources as a pool shared by all projects. On the other hand, when projects are distributed geographically or sharing resources between projects is not preferred, then this resource sharing policy may not be feasible. In such cases, the resources must be dedicated to individual projects throughout the project durations. This multi-project problem environment is defined here as the resource dedication problem (RDP). RDP is defined as the optimal dedication of resource capacities to different projects within the overall limits of the resources and with the objective of minimizing a predetermined objective function. The projects involved are multi-mode resource constrained project scheduling problems with finish to start zero time lag and non-preemptive activities and limited renewable and nonrenewable resources. Here, the characterization of RDP, its mathematical formulation and two different solution methodologies are presented. The first solution approach is a genetic algorithm employing a new improvement move called combinatorial auction for RDP, which is based on preferences of projects for resources. Two different methods for calculating the projects’ preferences based on linear and Lagrangian relaxation are proposed. The second solution approach is a Lagrangian relaxation based heuristic employing subgradient optimization. Numerical studies demonstrate that the proposed approaches are powerful methods for solving this problem

    A simulation approach to PERT network analysis

    Get PDF
    This paper presents simulation as a useful analytical tool for project network analysis. Simulation is a powerful tool for evaluating many of the decision parameters involved in project management. A computer program, named STARC, is used to illustrate the effectiveness of computer simulation for project planning. STATGRAPHICS software is used to illustrate some of the post-simulation statistical analyses that can be conducted.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Identification of a Novel ZIC3 Isoform and Mutation Screening in Patients with Heterotaxy and Congenital Heart Disease

    Get PDF
    Patients with heterotaxy have characteristic cardiovascular malformations, abnormal arrangement of their visceral organs, and midline patterning defects that result from abnormal left-right patterning during embryogenesis. Loss of function of the transcription factor ZIC3 causes X-linked heterotaxy and isolated congenital heart malformations and represents one of the few known monogenic causes of congenital heart disease. The birth incidence of heterotaxy-spectrum malformations is significantly higher in males, but our previous work indicated that mutations within ZIC3 did not account for the male over-representation. Therefore, cross species comparative sequence alignment was used to identify a putative novel fourth exon, and the existence of a novel alternatively spliced transcript was confirmed by amplification from murine embryonic RNA and subsequent sequencing. This transcript, termed Zic3-B, encompasses exons 1, 2, and 4 whereas Zic3-A encompasses exons 1, 2, and 3. The resulting protein isoforms are 466 and 456 amino acid residues respectively, sharing the first 407 residues. Importantly, the last two amino acids in the fifth zinc finger DNA binding domain are altered in the Zic3-B isoform, indicating a potential functional difference that was further evaluated by expression, subcellular localization, and transactivation analyses. The temporo-spatial expression pattern of Zic3-B overlaps with Zic3-A in vivo, and both isoforms are localized to the nucleus in vitro. Both isoforms can transcriptionally activate a Gli binding site reporter, but only ZIC3-A synergistically activates upon co-transfection with Gli3, suggesting that the isoforms are functionally distinct. Screening 109 familial and sporadic male heterotaxy cases did not identify pathogenic mutations in the newly identified fourth exon and larger studies are necessary to establish the importance of the novel isoform in human disease

    A DNMT3B Alternatively Spliced Exon and Encoded Peptide Are Novel Biomarkers of Human Pluripotent Stem Cells

    Get PDF
    A major obstacle in human stem cell research is the limited number of reagents capable of distinguishing pluripotent stem cells from partially differentiated or incompletely reprogrammed derivatives. Although human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) express numerous alternatively spliced transcripts, little attention has been directed at developing splice variant-encoded protein isoforms as reagents for stem cell research. In this study, several genes encoding proteins involved in important signaling pathways were screened to detect alternatively spliced transcripts that exhibited differential expression in pluripotent stem cells (PSCs) relative to spontaneously differentiated cells (SDCs). Transcripts containing the alternatively spliced exon 10 of the de novo DNA methyltransferase gene, DNMT3B, were identified that are expressed in PSCs. To demonstrate the utility and superiority of splice variant specific reagents for stem cell research, a peptide encoded by DNMT3B exon 10 was used to generate an antibody, SG1. The SG1 antibody detects a single DNMT3B protein isoform that is expressed only in PSCs but not in SDCs. The SG1 antibody is also demonstrably superior to other antibodies at distinguishing PSCs from SDCs in mixed cultures containing both pluripotent stem cells and partially differentiated derivatives. The tightly controlled down regulation of DNMT3B exon 10 containing transcripts (and exon 10 encoded peptide) upon spontaneous differentiation of PSCs suggests that this DNMT3B splice isoform is characteristic of the pluripotent state. Alternatively spliced exons, and the proteins they encode, represent a vast untapped reservoir of novel biomarkers that can be used to develop superior reagents for stem cell research and to gain further insight into mechanisms controlling stem cell pluripotency

    WeederH: an algorithm for finding conserved regulatory motifs and regions in homologous sequences

    Get PDF
    BACKGROUND: This work addresses the problem of detecting conserved transcription factor binding sites and in general regulatory regions through the analysis of sequences from homologous genes, an approach that is becoming more and more widely used given the ever increasing amount of genomic data available. RESULTS: We present an algorithm that identifies conserved transcription factor binding sites in a given sequence by comparing it to one or more homologs, adapting a framework we previously introduced for the discovery of sites in sequences from co-regulated genes. Differently from the most commonly used methods, the approach we present does not need or compute an alignment of the sequences investigated, nor resorts to descriptors of the binding specificity of known transcription factors. The main novel idea we introduce is a relative measure of conservation, assuming that true functional elements should present a higher level of conservation with respect to the rest of the sequence surrounding them. We present tests where we applied the algorithm to the identification of conserved annotated sites in homologous promoters, as well as in distal regions like enhancers. CONCLUSION: Results of the tests show how the algorithm can provide fast and reliable predictions of conserved transcription factor binding sites regulating the transcription of a gene, with better performances than other available methods for the same task. We also show examples on how the algorithm can be successfully employed when promoter annotations of the genes investigated are missing, or when regulatory sites and regions are located far away from the genes
    • …
    corecore